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Shell Effects in the Equation of State of Metals 
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A simple quasiclassical Z-scaling model (QMT) is proposed to calculate the 
electron equation of state (EOS) for matter with a high energy concentration. 
This model may be employed over a wide range of densities and temperatures 
from the Saha model region of application to the corrected Thomas-Fermi 
model model (TFC) area of use. The treated model describes ah initio typical 
step behavior of the ionization state and energy as a result of successive shell 
ionization with increased temperature. The model naturally includes the effects 
of electron-ion interaction with increased density. This EOS model may be 
interesting for gas dynamics, energetics, astrophysics, etc. 

KEY WORDS: equation of state; high pressures; ionization; quasiclassical 
approach; Thomas-Fermi model. 

1. I N T R O D U C T I O N  

In this pape r  the quasiclassical  e lect ron equa t ion  of state (EOS)  is 
p r o p o s e d  for ma t t e r  with a high energy concent ra t ion .  The stat is t ical  EOS 
models  [ 1 ]  c o m m o n l y  employed  in this range of pa rame te r s  are the 
T h o m a s  Fe rmi  (TF)  mode l  [2 ] ,  the T F  mode l  with gradient  and  exchange 
correc t ions  ( T F K  or  T F C )  [3, 4] ,  and  the quan tum-s ta t i s t i ca l  mode l  
[ 5 - 7 ] ,  t rea t ing these corresct ions  self-consistently. 

The  stat is t ical  T F  mode l  is a d o m i n a n t  term of the H a r t r e e - F o c k  
mode l  expans ion  in a semiclassical  p a r a m e t e r  ~ = d,~/dx (,~ is de Broglie 
wavelength) .  I t  averages all the physical  quant i t ies  ignor ing  the a tomic  
shell s tructure.  The  grad ien t  and  exchange correc t ions  have a second order  
in ~ and  do  not  change  the averaged  behav iou r  of physical  functions.  
However ,  a Tay lo r  series in ~ canno t  descr ibe all the a tomic  system 
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features because the functions are nonanalytical in 4. There are terms 
~ n  exp(i/~) and a separation of the dominant such term enables us to 
consider the shell effects [8]  and to construct the EOS quasiclassical 
model. 

It should be noted that some semiclassical aspects (wave functions, 
quantization condition) one can find in different publications, for example, 
in Refs. 9-11. But if one uses a succesive semiclassical approach, all the 
resulting physical quantities are the terms of an expansion series in a 
semiclassical parameter 4, the dominant TF term, the gradient, exchange, 
and shell corrections being included. A similar approach has been used 
independently in Ref. 12 to describe the total binding energy of an isolated 
atom at zero temperature. 

2. G E N E R A L  P R I N C I P L E S  

The TF model in a Wigner-Seitz spherical cell is the basis of our 
theory. Electron density, particle number, free energy, internal energy, and 
pressure in the TF model are (in the following equations the atomic units 
are used) 

PTF(r)=~2 T3/211/2(lt-V(r!) (1) 

NTV = f df PTv(r) (2) 

2 f dFPTv(r) (3) 

EvF:X/2TS/2 f d~I3/z(#--V(r!)+~f dFpvF(r)[V(r) 2~Zr ] 7r--- 5- -- (4) 

PTF = 7~ 2 Ts/213/2(#/T) (5) 

where T,/~, Z, and In(x), respectively, are the temperature, chemical poten- 
tial, nuclear charge, and Fermi-Dirac integral, and V(r) is a potential 
electron energy, 

Z pTv(r') 
V(r)= -7+fde' I~-~'1 
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If one wants to account for some other effect in addition to the TF 
approach, there is a general expression for the correction to the TF free 
energy through some effect [1 ]: 

f 
,u 

fF= - dp' aN(#') (6) 
--oo 

where fiN(#')=~ d~fp(f, #') is the particle number correction, the correc- 
tion to the TF electron density fp through the effect being small. 

In the treated nonrelativistic self-consistent potential approach, the 
TF-method does not consider the effects of the electron density 
inhomogeneity, exchange interaction, and atomic shell structure. The use of 
Eq. (6) leads us to construct the additive expression for the free energy with 
regard to all the above effects on the TF-model basis. The result is a 
quasiclassical EOS model (QM): 

FQM = FT~ + 6rn . . . .  + aFs. 

EQM = ETV + fEq . . . .  + fEsh 

PQM = PTV + fPq . . . .  + fP~h 

(7) 

(8) 

(9) 

where subscripts "qu-ex" and "sh" denote quantum-exchange and shell. 
Since quantum-exchange corrections are calculated as in the T F K  model 
[4] ,  in this paper we consider the shell corrections only. 

One can derive from Eq. (6) the pressure correction in a general form, 

6 P -  •W T = P T F ( R 0 )  f #  + -- d[.~' fp(I..l t, R o )  ( 1 0 )  

where R o is the spherical cell radius, and W is the atomic cell volume. 
To obtain from Eq. (6) the relation for a shell corrections to the 

internal energy, one needs the form of the shell density correction. When 
using the spherically symmetric semiclassical wave function, one can obtain 
the electron density and particle number expressions: 

p(r,p)= ~ [~{,,}(r)12f(E{~ - # )  

= 1 dt~f(Enl(~C)-Ia'] 2 l + 1  dE~l 
(11) 2~ 2 \ T /I rZpm(r) dn n, 1 

n, 1 
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where ~c is quasiimpulse, pnl(r)=~/2(Enl-V(r)-(l+l/2)Z/2r2), and n 
and l are the principal and angular quantum numbers. If the sums Y.,1 in 
Eqs. (11) and (12) are replaced by integrals ~dndl, all the information 
about shell effects is lost and we obtain the TF density expression. 

The use of the Poisson equation 

~, f ,= dn f(n)cos(27rkn), 0 < ~ <  1 
n = a  k ~  r 

enables us to make the proper substitution Z,1 ""  ~ ~ dn dl.... Subtracting 
the TF term ( k = s = 0 ) ,  we obtain the density shell correction and the 
internal energy shell correction: 

6Esh=6Fsh-- T--~-f-=~d~ p(r)+~ V(r) (6#-6V)+6E2 (13) 

( ~ )  2 l + 1  cos(2~kn)cos(2~s/) 

where Z'k,~ denotes the sum without term k = s = O. 

3. GENER ALIZED QUASICLASSICAL Q U A N T I Z A T I O N  
C O N D I T I O N  

To calculate the integrals in Eqs. (10)-(14), we need the electron 
energy spectrum that links E with n and l. To describe the discrete energy 
levels, one can use the Bohr-Sommerfeld quantization condition 

BE1 : ~z(n -- l --  1/2) (15) 

where SE1 = ~ dr phi(r) is an action. But there are both discrete and band 
spectra for the compressed atom. The quantization condition, expressed by 
Eq. (15), is inapplicable in this case. So in order to describe such spectrum 
features, we need a generalized quantization condition for which a number 
of requirements must be met: 

1. For  strongly bound electrons this quantization condition trans- 
forms to Eq. (15). 

2. For  free electron states it describes a continuous spectrum. 

3. For  •=0:  

r [En(~c = 0), Ro] =0 ,  /is even 

~l[En(~c =0) ,  Ro] =0 ,  /is odd 

where <bl(E, r) is a radial wave function. 
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4. The function E(~) near the point ~c = 0 is quadratic: 

E(x) = E(0) + c~K 2 + --- 

Let us construct the approximate generalized quantization condition by 
analogy with the explicit one-dimensional quantization condition (see 
Ref. 13) and with regard to the above requirements: 

g E l = r c ( n - l - 1 / 2 ) - ( - 1 ) l a r c s i n  tan(Ael) c~ ~oo (16) 

where Az~ characterizes bandwidth 

AEI = 8 + a rc tan  I t a n h  ( 4  d21 ) ] ,  O~AEI~ 4 

2 2 
d2 l _ p e l ( R o ) R  o ( l +  1/2) 2 

/~1/2 R 3/2 
1 /~1 

fll = 4Tcp(Ro) R4 -- 3(l+ 1/2) 2 (17) 

d 2 1,42 I E11n l~Ell ' 1 /1 - id21 \ SEI:SEI-{-T --~-e + s a r g r ( T )  
F [ 1 -- id2"~ d 2 d 2 d 2 

arg ~ )  - ~ - T ( ~ ) -  ~ [~-~--~-  = -  n=o arctan ( ~ T - 1 ) ]  ' 

Figure 1 shows a rather good agreement between Eq. (16) and the model 
[14] results for the electron energy spectrum of the compressed iron. 

4. SHELL C O R R E C T I O N  TO THE PARTICLE N U M B E R  

Let us calculate the particle number shell correction using Eqs. (16) 
and (17). When assuming for simplicity the distribution of electron states 
within the band to be one-dimensional, 

[ dg--- =--1 if0 d~c... (18) 
K 0 

840/13/2-8 
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one can obtain the relation for the particle number: 

- ~  . (2l+1) dEge, fF cosr2k(SEl + l~(l-t-1/2))] lk(~oE1) 

~VJ E1 
gEX= dE (19) 

F u n c t i o n  Ik(q~E~) is a resul t  o f  the  i n t e g r a t i o n  o v e r  lc: 

( - ly  
Ik(~PE,) = - - - - ~  [P~(2~O21- 1)--Pk_,(2q~ 2, -- 1)], k # 0  

I0(q~E1 ) = 1, q~El = tan AE1 
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Fig. 1. Electron energy spectrum for strongly compressed 
iron at temperature T=0. Heavy particle density ni= 
3.64 x 1 0  29 m - 3 .  
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P~(X) is a Legendre polynomial. For  strongly bound electrons A el ~ 0 ,  
~0E1 ~ 0, Ik(~0) --* 1, and the corresponding energy levels are discrete. So the 
discrete level contribution to the shell correction to the TF model spectrum 
is maximal. For  sufficiently large energies (free electron states) Ael-*  re/4, 
~oE1--* 1, Ik(~0E1) --* 0, and the corresponding energy state contribution to 
the shell correction equals zero. Such a spectrum is continuous. There is an 
intermediate energy region between discrete and continuous spectra in 
which the shell effect role diminishes. So function Ik(~0E1) describes shell 
effect damping when passing from a discrete spectrum to a continuous one. 

The atomic spectrum analysis indicates a rather smooth dependence of 
En(l) on l within the shell with the principal quantum number n. But the 
shells with different n are separated by wide energy intervals (Fig. 2). So in 
the low-order i-expansion series we can replace a summing over discrete l 
by an integral over / .  Then an accurate summing over n by means of the 
Poisson formula enables us to take into account dominant effects of the 
atomic shell structure. The term with k = 0  in Eq. (19) is the TF part. 
The rest of the sum in Eq. (19) is a shell correction, 

where 2 = 1�89 and Z'k denotes the sum without term k = O. 
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5. NONDEGENERATE PLASMA 

Now let us calculate from Eq. (20) the particle number shell correction 
for the nondegenerate plasma. The chemical potential # is negative in this 
case and ]HI~T>> 1. So the factor fF[(E-p)/T] in Eq. (20) limits the 
integration region by discrete spectrum for which SE;, = S ~ ,  the function 
Ik(~0E1)~ 1 and varies weakly. After integrating by parts over E, one 
obtains 

6Nsh(P)= _1_ ~, 1_ f dE~f_~ f d22 sin[2k(SE)+ rE2)] Ik(~oe),) 
k k 

(21) 

To evaluate the integral over 22 we use a squared 2-expansion series, 

~2SE2 
SE2 = S E - -  7~2 (~E22  (~E = (22)  

b5 

That expansion is obvious for small 2. Figure 3 illustrates the validity of 
Eq. (22) for any permissible 2 [0 ~< 2 ~< 2max(E), SE;~max(E ) --'= 0"] in the treated 
temperature region. The integral over E is easily calculated because of the 
derivative f'r[(E-la)'/T] behaves like a delta function. Expanding all the 
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integrand functions in the neighborhood of the point E = # ,  one can 
obtain, finally, 

/" O~max 

) cos 

2nkz,o T t Ik(~P,o) 
sinh(2nZ,o T) cos 2kS, o k--- W- (23) 

; 

Equation (23) describes the "temperature" oscillations because of the 
electron shell ionization with increased temperature. The function 
Ik(~P,o)= 1 for the nondegenerate plasma and tends to zero when the 
chemical potential becomes positive and increases. Hence, it describes 
"temperature" oscillation damping when passing from nondegenerate 
plasma to condensed matter. 

A similar computation for the density and energy corrections 6p~h and 
fiE2 gives the next relation: 

OE 2 =# f dY c~psh = #  6N~h(#) (24) 

Qualitative evaluation and numerical calculations show that the shell 
correction fiVsh on the average is significantly smaller than the chemical 
potential correction fi#sh. So 3#~h may be calculated approximately from 
the normalization condition 

~#sh = --6Nsh/f dS~ (25) 

and the internal energy correction flEsh may be determined from Eqs. (13), 
(24), and (25), 

,~E~h={~Z--f df~[,--V(r)J},~#~h (26) 

Analysis of the pressure correction, expressed by Eq. (10), discloses 
that the second term is exponentially small for the nondegenerate plasma. 
The reason is that the cell boundary region is classically forbidden for the 
electron states with negative energies. So for the nondegenerate plasma, 
one can use 

C~Psh = p(Ro) 6#sh (27) 

Equations (23) and (25)-(27) allow us to calculate the shell corrections 
to the nondegenerate plasma equation of state. Figures 4-7 show the 
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comparison of the suggested model results with both the plasma [15] 
and the statistical [-4] model calculations. Considerable deviation of the 
statistical model confirms the important shell effects role in plasma region 
as noted in Ref. 16. 

6. QUASICLASSICAL TEMPERATURE MODEL (QMT) 

An extension of Eqs. (23) and (25~(27) over all ranges of the 
parameters with Eqs. (4), (5), (8), and (9) enables us to construct the 
quasiclassical "temperature" model (QMT), which turns into the TFK 
model for the degenerate matter and checks well with Saha model for the 
Boltzmann plasma. Indeed all the "temperature" shell corrections vanish 
for the degenerate matter because of the factor Ik(q~o). Of course in the 
intervening re ,on  of the parameters QMT is a reasonable physical inter- 
polation only. Thus, one can use this model instead of the mathematical 
union of the TFK and Saha models [-17] without any joining problems or 
any empirical data. The other great virtue of the QMT is its Z-scaling: a 
single set of calculations for one Z suffices for all Z. This virtue is known 
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for TF and T F K  models but one can use it for the shell correction too. 
Indeed let us separate the Z-dependence of all the quantities in Eqs. 
( 2 3 )  ( 2 6 ) :  

S(Z) = ~,u'~(1)~1/3~ , Tu(Z) = ,,,L. ,u(1)/Z, 

= 

OP TF ) (Z) 

(Z) __ ~ (1) 1/3 
g ~ m a x  - -  7"f'Zmax Z , 

\ / 

1 , 3 .  

ar---~- [/~TF-- UTF(r)] Z 

The procedure for Z-scaling calculation of the shell thermodynamic terms 
and needed tables are assumed in Ref. 18. 
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For  demonstrat ion Q M T  Hugoniot  curves of some metals are shown 
in Figs. 8-10 with the TFK-model  results and the available experimental 
data. We used in our calculations the one-component  plasma theory [19] 
for the nuclear motion term. 

7. C O N C L U S I O N S  

A simple quasiclassical Z-scaling model is proposed to calculate the 
electron equation of state for the matter  with a higher energy concentra- 
tion. This model may be employed over a wide range of densities and 
temperatures from the Saha model region of application to the improved 
Thomas-Fermi  model (TFK)  area of use. The proposed model describes 
ab initio typical step behavior of the ionization state and energy as a result 
of successive shell ionization with increased temperature. The model 
naturally includes the effects of electron-ion interaction with increased 
density. 



Shell Effects in Equation of State 329 

ACKNOWLEDGMENT 

The authors thank Professor V. E. Fortov for fruitful discussions. 

R E F E R E N C E S  

1. D. A. Kirzhnits, Yu. E. Lozovik, and G. V. Shpatakovskaya, Soy. Phys. Usp. 18:649 
(1976). 

2. R. P. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75:1561 (1949). 
3. D. A. Kirzhnits, Soy. Phys. JETP 5:64 (1957); JETP 8:1081 (19959). 
4. N. N. Kalitkin, Soy. Phys. JETP 11:1106 (1960). 
5. N. N. Kalitkin and L. V. Kuz'mina, Soy. Phys. Solid State 13:1938 (1972). 
6. R. More, Phys. Rev. A 19:1234 (1979). 
7. F. Perrot, Phys. Rev. A 20:586 (1979). 
8. D. A. Kirzhnits and G. V. Shpatakovskaya, Soy. Phys. JETP 35:1088 (1972). 
9. J. W. Zink, Astroph. J. 162:145 (1970). 

10. C. M. Lee and E. I. Thorsos, Phys. Rev. A 17:2073 (1978). 
11. A. V. Andriyash and V. A. Simonenko, Plasma Phys. (USSR) 14:1201 (1988). 
12. B.-G. Englert and J. Schwinger, Phys. Rev. A 32:26 (1985). 
13. G. V. Shpatakovskaya, Moscow Inst. Appl. Math., USSR Acad. Sci. (1985), Preprint 

No. 28. 
14. A. I. Voropinov, G. M. Gandelman, and V. G. Podval'nyi, Soy. Phys. Usp. 13:56 (1970). 
15. B. N. Bazylev, F. N. Borovik, G. A. Vergunova, S. I. Kaskova, G.S. Romanov, V.B. 

Rozanov, L. K. Stanchits, K. L. Stepanov, and A. V. Teterev, Laser Particle Beams 6:709 
(1988). 

16. I. L. Iosilevskii and V. K. Gryaznov, High Temp. Thermophys. (USSR) 19:799 (1981). 
17. K. S. Trainor, J. Appl. Phys. 54:2372 (1983). 
18. G. V. Shpatakovskaya, Moscow Inst. Appl. Math., USSR Acad. Sci. (1988), Preprint 

No. 160. 
19. V. P. Kopyshev, Moscow Inst. Appl. Math., USSR Acad. Sci. (1978), Preprint No. 59. 
20. S. P. Marsh, ed., LASL Shock Hugoniot Data (University of California Press, Berkeley- 

Los Angeles London, 1980). 
21. A. A. Bakanova, I. P. Dudoladov, and R. F. Trunin, Soy. Phys. Solid State 7:1615 (1965). 
22. K. K. Krupnikov, A. A. Bakanova, M. I. Brazhnik, and R. F. Trunin, Soy. Phys. Doklady 

148:1302 (1963). 
23. C. E. Ragan III, M. G. Silbert, and B. C. Diven, J. Appl. Phys. 48:2860 (1977). 
24. C. E. Ragan III, Phys. Rev. A 25:3360 (1982). 
25. C. E. Ragan III, Phys. Rev. A 29:1391 (1984). 
26. W. J. Nellis, A. C. Mitchell, N. C. Holmes, et al., in Shoek Waves in Condensed Matter 

(North-Holland, Amsterdam-New York Tokyo, 1983). 
27. L. V. Al'tshuler, N. N. Kalithin, L. V. Kuz'mina, and S. B. Chekin, Soy. Phys. JETP 

45:167 (1977). 
28. S. B. Kormer, A. I. Funtikov, V. D. Urlin, and A. N. Kolesnikova, Soy. Phys. JETP 

15:477 (1962). 
29. A. V. Bushman, I. K. Krasiuk, P. P. Pashinin, A. M. Prokhorov, V. Ya. Ternovoi, and 

V. E. Fortov, JETP Lett. (USSR) 39:341 (1984). 
30. V. A. Simonenko, N. P. Voloshin, A. S. Vtadimirov, A. P. Nagibin, V.N. Nogin, V.A. 

Popov, V. A. Sall'nikov, and Yu. A. Shoidin, Soy. Phys. JETP 88:1452 (1985). 
31. E. N. Avrorin, B. K. Vodolaga, N.P. Voloshin, V. F. Kuropatenko, G.V. Kovalenko, 

V. A. Simonenko, and B. T. Chernovoliuk, JETP Lett. (USSR) 43:241 (1986). 


